Delocalisation in High-Resolution TEM Images of Platinum Catalyst Nanoparticles

L. Cervera Gontard 1, R. Dunin-Borkowski 1, M. Hjitch 2, D. Ozkaya 3, L.-Y. Chang 4, A. Kirkland 4 and C. Hetherington 4

1. Department of Materials Science and Metallurgy, Cambridge University, UK  2. Centre National de Recherche Scientifique, Vitry-sur-Seine, France  3. Johnson Matthey Technology Centre, Reading, UK  4. Department of Materials, Oxford University, UK

INTRODUCTION

Most industrial heterogeneous catalysts comprise high-surface-area solids, onto which an active component is dispersed in the form of very small particles. The preparation of commercial catalysts is generally not well controlled, and is often based on accumulated experience. Transmission electron microscopy (TEM) is a key experimental tool for the characterisation of catalyst nanoparticles with atomic resolution [1].

The high spatial and temporal coherence of a field emission gun (FEG) TEM increase the information limit of the microscope. However, at large defocus values, the contrast transfer function of the microscope contains many oscillations, which lead to contrast reversals and delocalisation of the information in the image. Detail in the image is then displaced by an amount that increases with defocus [2]. Although the use of aberration correctors on modern TEMs [3,4] has improved the interpretable resolutions of images, comparisons with simulations are still required to understand the observed contrast.

There is great benefit in combining the information that is present in a defocus series of images, in effect extending the point resolution of the microscope to the information limit [5,6]. Figure 1 shows the result of using such an approach to image a Pt catalyst nanoparticle [7]. Both the surface atomic arrangement of the Pt particle and details of its graphitic carbon support can be seen in this image. Although TEM images can now be used to provide sub-Angstrom resolution information about materials, in this article we are interested primarily in the additional information that can be obtained as a result of the presence of objective lens aberrations. It has long been known that displacements between bright-field and dark-field images can be used to measure certain imaging parameters of the objective lens of a microscope [8].

Here, we show that delocalisation in HRTEM images can be used to extract useful information about a specimen and about the imaging conditions, both qualitatively and quantitatively. Our analysis is facilitated by the use of geometrical phase analysis to measure local lattice fringe displacements [9,10].

MATERIALS AND METHODS

We examined Pt nanoparticles, with an average size of 5 nm, which were supplied on a partially graphitised carbon support. This combined system has important industrial applications in fuel cells and car exhausts. The samples, which were in the form of a dry powder, were placed directly onto holey-carbon copper TEM grids.

Experimental images were acquired at 200 kV using a JEOL 2200FS FEG TEM equipped with a spherical aberration corrector, at a nominal magnification of 500k. This instrument, which is located in the Department of Materials in Oxford University (UK), incorporates aberration correctors in both its imaging and its probe-forming lenses, as well as an in-column omega-type energy filter. A double-hexapole system can be used to eliminate aberrations up to the third order. Here, as we...

Figure 1:
Focal-series reconstruction of the phase shift of a 5 nm Pt particle supported on graphitic carbon, obtained from a series of 20 images acquired at 200 kV using a defocus step size of 5 nm, with the spherical aberration coefficient C3 adjusted to -30 μm.

MICROSCOPY AND ANALYSIS • NOVEMBER 2006
are interested in the effects of the aberrations, we acquired images using the uncorrected coefficient of spherical aberration of the objective lens $C_0$ of 0.5 mm (corresponding to 0.19 nm point resolution at Scherzer defocus).

DELOCALISATION OF NANO-PARTICLES

The extent of image delocalisation (i.e. the image displacements) depends on the spherical aberration coefficient and on the defocus value used. For a perfectly homogeneous crystal, which has uniform thickness, no defects and translational symmetry, delocalisation effects are not readily apparent. Any imperfection or discontinuity, such as at the edge of a specimen, destroys this translational symmetry locally.

Figure 2 shows a low magnification bright-field defocused image of Pt particles supported on graphitic carbon. Some of the particles are diffracting strongly and are associated with adjacent regions of bright contrast, which results from delocalisation.

Figure 3 shows a defocus series of high-resolution lattice images of a single Pt particle. When imaged out of focus, Fresnel fringes appear around the edge of the particle, and in addition the lattice fringes are displaced with respect to the true position of the particle, which becomes progressively darker with increasing defocus. The displaced lattice fringes move away from the particle approximately linearly with increasing defocus. Despite $C_0$ not being zero, delocalisation is minimised in one of the images (Figure 3c), because in this orientation a single spatial frequency dominates the observed contrast (see below).

QUALITATIVE INFORMATION FROM DELOCALISATION

Qualitatively, the image shifts that are associated with delocalisation can be used to provide information about the orientation of a particle. Figure 4a illustrates the fact that the regions of bright contrast that surround a particle move in specific directions, which are related to its orientation. The angle of 70º observed between the displaced images is close to the value of 70.52º expected between 111-type reflections in a cubic structure oriented close to a [011] zone axis. In Figure 4b, the angle between the reflections is 90º and the fringes have a spacing of 0.19 nm, corresponding to the 200 plane spacing of Pt. The relative intensities of the displaced bright regions depend on the degree and direction of misalignment of the particle from the exact zone axis orientation.

QUANTITATIVE INFORMATION FROM DELOCALISATION

The extent of image delocalisation depends on the spatial frequency $g$ and on the wave aberration function of the objective lens $V(g)$ [2]. It is large when $|V(g)|$ is large. Neglecting higher order aberrations, the equation that relates the displacement of the image $\Delta R$ to the imaging conditions is:

$$\Delta R = |V(g)| = \lambda |g| + C_0 \lambda^2 |g|^3$$

Eq. 1

where $\Delta f$ is the defocus and $\lambda$ is the electron wavelength.

From Equation 1, it follows that for each spatial frequency in an image $\Delta R$ varies linearly with defocus. Figure 5 shows Equation 1 plotted as a function of defocus for lower spatial frequency reflections in Pt, for an accelerating voltage of 200 kV, using values for $C_0$ of both 0.5 mm and -30 µm.

The graphs illustrate the fact that for every spatial frequency there is a defocus value for which delocalisation is exactly zero. However, when $C_0$ is close to zero, it is possible to find a defocus value for which the extent of delocalisation can be minimised for all spatial frequencies at the same time.

ABSOLUTE DEFOCUS MEASUREMENT

The defocus value of an image is usually obtained either by comparing the contrast in the image with simulations or from the analysis of diffractograms acquired from amorphous material close to the area of interest (in this case the holey carbon film on the TEM grid).

However, for a nanoparticle, the defocus obtained from diffractogram analysis of the support film may be very different from the true defocus of the particle, as shown schematically in Figure 3f. A method that can be used to find the absolute defocus value of a nanoparticle is now presented. The approach, which relies on the presence of delocalisation associated with a known spatial frequency, is as follows:

1. A through-focus series of bright-field images of the particle is acquired. 2. The extent of delocalisation for a particular spatial frequency in each image is measured, for example by using geometrical phase analysis (see Figure 6). 3. Defocus values are also mea-
sured from the support film in each image using diffractogram analysis. 4. The image displacements associated with delocalisation are plotted as a function of the defocus values obtained from diffractogram analysis. 5. The lateral displacement of the graph that is required for consistency with Equation 1 is determined. This value corresponds to the difference in focus between the nanoparticle and the support film (the parameter Z in Figure 3f).

Figure 7 shows the application of this approach to the images of the Pt particle shown in Figure 3. The entire defocus series contained 20 images, with a defocus step size between adjacent images of 100 nm. The slope of the experimental graph matches that predicted using Equation 1 for a spatial frequency that corresponds to the 111 reflection in Pt. The experimental measurements are displaced laterally with respect to the predicted graph by an averaged value of 85 nm. The absolute defocus value of the particle in each image is therefore obtained by subtracting 85 nm from the values measured using diffractogram analysis. According to Equation 1, the slope of the experimental graph shown in Figure 7 can also be used for calibrating the defocus step size if the relevant plane spacing is known. The slight deviation of the experimental slope from the predicted graph in Figure 7 therefore almost certainly results from a small error in the defocus step calibration.

CONCLUSIONS
Delocalisation is an imaging artifact that is present in all transmission electron microscopes. In the absence of spherical aberration, delocalisation is absent at zero defocus for every spatial frequency. However, if spherical aberration is present, delocalisation can only be removed for one spatial frequency at each defocus value. Here, we have shown that delocalisation can be used qualitatively to provide information about the orientation of a nanoparticle. It can also be used to provide quantitative information about the absolute defocus value of a nanoparticle, when combined with diffractogram analysis. This information is useful for the interpretation of results obtained using techniques such as through-focus exit wavefunction restoration.

REFERENCES